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Disclaimer: This is probably all wrong or will be 
wrong shortly.



Strings

Start off with something simple … a data type.



Strings

● A wrapper around an internal array of bytes.
● Good at: String … stuff

‘A’ ‘T’‘C’_chars: 0x0200
_length: 3var animal = “CAT”;

0x0001



Strings are immutable

● Once created you cannot change a string’s value.

‘A’ ‘T’‘C’_chars: 0x0200
_length: 3var animal = “CAT”;

animal = animal.replace(“C”, “R”);

0x0004

‘A’ ‘T’‘R’_chars: 0x0300
_length: 3

var animal = new String(“CAT”).replace(“C”, “R”);

0x0008



String concatenation in loops

_chars: 0x0200
_length: 8

var favCats = “My cats:“;

favCats = “My cats: Tim“;

favCats = “My cats: Tim Bob”;

favCats = “My cats: Tim Bob Jim”;

...

_chars: 0x0300
_length: 12

var cats = [“Tim”, “Bob”, “Jim”, “Kat”, “Kim”, “Sam”];
var favCats = “My cats:“;
cats.forEach(x => favCats + “ “ + x);

_chars: 0x0400
_length: 16

_chars: 0x0500
_length: 20



Unicode Encoding/Decoding

● Handles encoding/decoding internal byte array to/from Unicode ☺.
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ECMAScript = UTF-16 Encoding

● .length() returns # of UTF-16 code units not the # of characters (code points)

�

U+1D306

DF06D834 UTF-16 Code Unit (HEX)

0011010011011000 0000011011011111UTF-16 Code Unit Binary

Code Point

console.log("�".length); // 2



Jargon

The CS language barrier



Abstract Data Types

● Abstract Data Types
○ Operations that can be performed
○ Operation performance characteristics

● Confusing because people may not use the “correct terminology”.
● Different implementations type may have different performance characteristics.
● Similar sounding names for slightly different things.

○ ECMAScript Map (Standard doesn’t specify but probably a Hash Table)
○ C# Dictionary (hash table)
○ C# SortedDictionary (binary search tree)
○ Java HashMap (hash table)
○ Java TreeMap (binary search tree)



Big O Complexity

● AKA: “the run-time”, “the situation”, 
worst case runtime

● Way to talk about how something 
behaves as number of elements grow.

● If I add one extra element how does it 
affect the performance?

● Worst case number of operations.
● Independent of how long each 

individual operation takes.

Bad

Good

Bad 
Times



Maximum problem size
● What is the maximum sized problem that can be solved practically?



Linear Complexity O(n): Find element in collection

“DOG” “BAT”“CAT” . . . “RAT”

RAT?

Hint:

for (var i …



Quadratic Complexity O(n2): Joining two collections

{ Name: “Tom”, Type: “CAT” }

{ Name: “Bob”, Type: “CAT” }

{ Name: “Fido”, Type: “Dog” } { Name: “Tom”, Owner: “Dave” }

{ Name: “Bob”, Type: “Jeff” }

{ Name: “Fido”, Type: “Sean” }

{ Name: “Tom”, Type: “CAT”, Owner: “Dave” }

{ Name: “Bob”, Type: “CAT”, Owner: “Jeff” }

{ Name: “Bob”, Type: “CAT”, Owner: “Sean” }

Hint:

for (var i …
   for (var j



Cubic Complexity O(n3): Joining three collections

{ Name: “Tom”, Type: “CAT” }

{ Name: “Bob”, Type: “CAT” }

{ Name: “Fido”, Type: “Dog” } { Name: “Tom”, Owner: “Dave” }

{ Name: “Bob”, Type: “Jeff” }

{ Name: “Fido”, Type: “Sean” }

{ Name: “Tom”, Type: “CAT”, Owner: “Dave”, Age: 2 }

{ Name: “Bob”, Type: “CAT”, Owner: “Jeff”, Age: 12 }

{ Name: “Bob”, Type: “CAT”, Owner: “Sean”, Age 5 }

Hint:

for (var i …
   for (var j ...
      for (var k ...

{ Name: “Tom”, Age: 2 }

{ Name: “Bob”, Age: 12 }

{ Name: “Fido”, Age: 5 }



Arrays

The workhorse



Arrays

● Collection of elements
● Contiguous chunk of memory
● Should all be of same type* 

○ Can insert multiple types in JS crazy-land.  Please don’t.

● Good at:
○ Iterating
○ Inserting/Removing from end.
○ Finding/Updating elements by index.

● Bad at:
○ Finding an element by some criteria**.
○ Inserting element in front or middle.

● Aliases: List (not LinkedList), Vector
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Inserting into arrays

Inserting at front/middle Inserting at end
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Resizing

foreach + push concat
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Arrays of primitives or references?

● To box or not to box?  Hint: You can’t tell.

100

200

300

 { _val: 100 }

{ _val: 200 }

 { _val: 300 }

0x0030

0x0060

0x0010

var foo = [ 100, 200, 300 ];

? ?



Aside: ES6 Typed Arrays

● Allows working with collections of primitives stored as raw binary data.
● Intended for graphics, video and audio so probably not what you want.

const buffer = new ArrayBuffer(16); // 16 bytes
const int32View = new Int32Array(buffer); // 16 bytes / 4 bytes per int = 4 ints

for (let i = 0; i < int32View.length; i++) {
  int32View[i] = i;
}

int32View.forEach(x => console.log(x)); // 0, 1, 2, 3



Map

The bonus data structure



Maps

● Collection of key:value pairs
● Good at: 

○ Looking things up based on key.
○ Random order inserts and deletes based on key.

● Bad at:
○ Iterating in sorted order.
○ Finding next/previous element in sorted order.

● Aliases: HashMap, Dictionary



Hashing

● Soon to be legal in Canada.
● Goal: Create a “hopefully” unique identifying number for an object.

function getHashCode(s) {
   if (!s) { return 0; }

   var hash = 7;
   for(var i = 0; i < s.length; i++) {
      hash += 3 * s.charCodeAt(i); // 3 * UTF-16 char code
   }

   return hash;
}

var a = "This is a string.";
var b = "This is a different string.";
console.log(getHashCode(a)); // 4597
console.log(getHashCode(b)); // 7546

// Aside: Horrible because "abc" gives same value as "cba"
console.log(getHashCode("abc")); // 889
console.log(getHashCode("cba")); // 889



Hashing + Array = Hash Map

● What if we we used an object’s hash code as an index into an array?

0x010

0x020

null

ObjA
(Name hash: 0)

ObjB
(Name hash: 1)

var key = objB.Name;
console.log(key.getHashCode()); // 1

// Store
var map[key] = objB;

// Retrieve
var objBcopy = map[key];

// Reference equality
objB === objBcopy; // true

Q: What is the run-time complexity of 
store? retrieve?

0

1

2



Array Size << Possibile Hash Codes

Obj B
(Name hash: 1)

Obj A
(Name hash: 0)Obj D

(Name hash: 9)
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Int32: -2,147,483,648 to 2,147,483,647



Separate Chaining

0x001

0x005

null

val: 0x1000
next: 0x0200

Obj B
(Name hash: 1)

0

1

2

Obj A
(Name hash: 0)

Obj C
(Name hash: 3)

val: 0x2000
next: 0x0300

val: 0x0100
next: null

val: 0x3000
next: null

Obj D
(Name hash: 9)



µPattern: Join 2+ collections
var primary = [
  { Name: "Tom", Type: "Cat" }, 
  { Name: "Bob", Type: "Cat" },
  { Name: "Tim", Type: "Dog" }
];

var secondary = new Map([ ["Tom", 5], ["Bob", 12] ]);

var owners = [
  { Name: "Tom", Owner: "Dave" },
  { Name: "Bob", Owner: "Jeff" }
];
var tertiary = new Map();
owners.forEach(x => tertiary.set(x.Name, x.Owner));

// Join together to create results
var results = [];
primary.forEach(x => results.push({
  Name: x.Name,
  Owner: secondary.get(x.Name) || 'Unknown',
  Age: tertiary.get(x.Name) || null
}));

Results:
   {"Name":"Tom","Owner":5,"Age":"Dave"},
   {"Name":"Bob","Owner":"Unknown","Age":"Jeff"},
   {"Name":"Tim","Owner":12,"Age":null}

Q: What is the run-time complexity?



Q: Why not just objects + properties instead?



Q: Why not just use objects + properties (ES5 style)?

var map = new Map([
  ["1", 'String'],
  [1, 'Number']
]);

console.log(map.get(1)); // Number
console.log(map.get('1')); // String
console.log("Size: ", map.size); // 2

for (let key of map.keys()) {
  console.log("Key: ", key);
}

for (let value of map.values()) {
  console.log("Value:", value);
}

Easily iterate 
over keys and 
and values!!!Non-String 

keys!

size!!
Also:

● Interpreter may be able to optimize.
● Communicates intent to other 

programmers.



Q: Why not just use arrays?



Q: Why not just use arrays for everything?

Few elements/items

● Using an array isn’t a bad idea
● The number of elements (N) is usually 

small.
● Arrays are simple.  KISS.

Lots of elements/items

● What number do we consider “lots”?  10, 
100, 1000?

● Apps are getting more complex and pulling 
more data from the backend.

● Faster to do filtering and sorting on front 
end than to launch another request.

● Will the amount of data grow over time?

80% vs. 20%

Correctness

● Would another data structure make the 
intent of this code more obvious?

● Want clarity with a bias towards simplicity.



Set

The bonus data structure



Set

● A Set is basically map with no value.
● Best for:

○ Checking for presence/absence of something of a key.
○ Finding the intersection and disjoint sets of elements between two groups.

● Aliases: HashSet



µPattern: Find unique elements in collection

const things = [ "Cat", "Dog", "Rat", "Cat", "Bat", "Bat", "Ant", "Rat" ];

const uniqueThings = new Set(things);

console.log(uniqueThings); // "Cat", "Dog", "Rat", "Bat", "Ant"

Q: What is the run-time complexity?



µPattern: Join 2+ collections
const primary = [
   { Name: "Tim", Type: "DOG" },
   { Name: "Bob", Type: "CAT" },
   { Name: "Tom", Type: "CAT" }
];

const appointments = [
   { Name: "Tim", Type: "CHECKUP" },
   { Name: "Bob", Type: "CHECKUP" },
   { Name: "Tim", Type: "VACCINATION" },
];

const secondary = new Set();
appointments
   .filter(x => x.Type == "VACCINATION")
   .forEach(x => secondary.add(x.Name));

const results = [];
primary.forEach(x => results.push({ 
   Name: x.Name,
   Type: x.Type,
   IsVaccinated: secondary.has(x.Name)
}));

Results:
  {"Name":"Tim","Type":"DOG","IsVaccinated":true}
  {"Name":"Bob","Type":"CAT","IsVaccinated":true}
  {"Name":"Tom","Type":"CAT","IsVaccinated":false}

Q: What is the run-time complexity?



Immutable (Persistent) Data Structures

Those things the React/Flux gurus go on about.



Origins of Immutable (Persistent) Data Structures

● Problem: Functional programming likes to create new collections and objects 
instead of mutating the existing ones.

● Lots of temporary copies = lots of garbage.
● Could we separate collections into changed and unchanged sections replacing 

only the changed sections?



Hand-wavey explanation [1/3]

let setA = new Set(“A”, “B”);
let setB = setA;
let setC = setB;

console.log(setA); // “A”, “B”
console.log(setB); // “A”, “B”
console.log(setC); // “A”, “B”

‘A’_chunks: [ 
  0x0010
]

‘B’

Q: How could we tell that SetA, SetB, 
and SetC are the same?



Hand-wavey explanation [2/3]

let setA = new Set(“A”, “B”);
let setB = setA;
let setC = setB;
setC = setC.add(“C”);

console.log(setA); // “A”, “B”
console.log(setB); // “A”, “B”
console.log(setC); // “A”, “B”, “C”

‘A’_chunks: [ 
  0x0010
]

_chunks: [
  0x0010, 
  0x0020
]

‘C’

‘B’

Q: How could we tell that SetA and 
SetC are different?



Hand-wavey explanation [3/3]

let setA = new Set(“A”, “B”);
let setB = setA;
let setC = setB;
setC = setC.add(“C”);
setB = setB.remove(“A”);

console.log(setA); // “A”, “B”
console.log(setB); // “B”
console.log(setC); // “A”, “B”, “C”

‘A’_chunks: [ 
  0x0010, 
  0x0030
]

_chunks: [
  0x0010, 
  0x0020,
  0x0030
]

‘C’

_chunks: [   
  0x0030 
]

‘B’



Immutable.js + React.js

● From a React perspective the interesting bit is that we can check for changes 
quickly.

● What if we pass in a set as a prop?  Do we need to re-render if the set hasn't 
changed?

● Immutable.js gives you collections that you can check for changes in constant 
time instead of searching through collection’s elements.

shouldComponentUpdate: function(nextProps) {

  return nextProps.setA !== this.props.setA; // Compare references

}



Summary 

AKA: Quiz Time



Summary / Quiz Time

● [True / False] We should use all the fancy stuff all the time.
● What complex thing do strings “usually” hide from us?
● When is n considered small?
● [True / False] Inserting in the middle of an array always causes a resize?
● How long does it take to search a list looking for x.Id === 2?
● What is a map good at?
● How long does it take to search a map for myMap[objA.Id]?
● What is a hash code?
● What is a collision?
● Why are immutable data structures useful in React?


