Data Structures for Web Devs

intro to Strings, Complexity, Arrays, Maps,
Sets and Immutable Data Structures

David Forshner

Disclaimer: This is probably all wrong or will be
wrong shortly.

Strings

Start off with something simple ... a data type.

Strings

® A wrapper around an internal array of bytes.
® Good at: String ... stuff

var animal = “CAT”;

0x0001

Strings are immutable

® Once created you cannot change a string’s value.
var animal = new String("CAT").replace("C", "R7);
0x0004
var animat="CAT", “
animal = animal.replace(“C”, “R”);

in

String concatenation in loops

var cats = [“Tim”, “Bob”, “Jim”, “Kat”, “Kim”, “Sam”];
var favCats = “My cats:*;
cats.forEach(x => favCats + “ “ + x);

var favCats = “My cats:*;
favCats ="My cats: Tim"

favCats = “My cats: Tim Bob Jim”;

Unicode Encoding/Decoding

® Handles encoding/decoding internal byte array to/from Unicode ©.

I

Code
Points

63

Code
Units
UTF-8
HEX

Code
Units
UTF-8
Binary

01100011

ECMAScript = UTF-16 Encoding

® .length() returns # of UTF-16 code units not the # of characters (code points)

- console.log("".length); // 2

UTF-16 Code Unit (HEX)

UTF-16 Code Unit Binary 11011111

Jargon

The CS language barrier

Abstract Data Types

® Abstract Data Types
o Operations that can be performed
o Operation performance characteristics

® Confusing because people may not use the “correct terminology”.
® Different implementations type may have different performance characteristics.
® Similar sounding names for slightly different things.

o ECMAScript Map (Standard doesn’t specify but probably a Hash Table)
C# Dictionary (hash table)

C# SortedDictionary (binary search tree)

Java HashMap (hash table)

Java TreeMap (binary search tree)

O O O O

Ell'(lc-g(n}} = Ofn) —— O{n{log(n)) = O(n"2) —O(n"l’.}.

Big O Complexity

® AKA: “the run-time”, “the situation”, j\ e
worst case runtime if’” Bad A
® Way to talk about how something < AN

behaves as number of elements grow. /
® Ifl add one extra element how does it

affect the performance? 500
® Worst case number of operations.
® Independent of how long each

individual operation takes. l

40 80 120

Maximum problem size

® Whatis the maximum sized problem that can be solved practically?

n_f(n)

2

lg n nlgn n n!
10 0.003 ps | 0.01 us 0.033 us 0.1 pus 1 pus 3.63 ms
20 0.004 ps | 0.02 us 0.086 us 0.4 pus 1 ms 77.1 years
30 0.005 ps | 0.03 us 0.147 ps 0.9 us 1 sec 8.4 x 10'° yrs
40 0.005 ps | 0.04 us 0.213 ps 1.6 us 18.3 min
50 0.006 ps | 0.05 ps 0.282 us 2.5 ps 13 days
100 0.007 ps | 0.1 ps 0.644 ps | 10 ps 4 x 10" yrs
1,000 0.010 us 1.00 us 0.966 us 1 ms
10,000 0.013 ps 10 ps 130 ps 100 ms
100,000 0.017 ps | 0.10 ms 1.67 ms 10 sec
1,000,000 0.020 us 1 ms 19.93 ms 16.7 min
10,000,000 0.023 ps | 0.01 sec | 0.23 sec 1.16 days
100,000,000 0.02T7 ps | 0.10 sec | 2.66 sec 115.7 days
1,000,000,000 0.030 us 1 sec | 29.90 sec || 31.T7 years

Figure 2.4: Growth rates of common functions measured in nanoseconds

Linear Complexity O(n): Find element in collection

- “BAT” o -

RAT?

Hint:

for (vari ...

Quadratic Complexity O(n?): Joining two collections

-~

{ Name: “Tom”, Type: “CAT”, Owner: “Dave” }

{ Name: “Fido”, Type: “Sean” }

{ Name: “Fido”, Type: “Dog” }

Hint:

for (vari ...
for (varj

{ Name: “Bob”, Type: “CAT”, Owner: “Jeff” }

{ Name: “Bob”, Type: “CAT”, Owner: “Sean” }

Cubic Complexity O(n3): Joining three collections

{ Name: “Fido”, Type: “Sean” }

{ Name: “Fido”, Type: “Dog” }

{ Name: “Fido”, Age: 5}

Hint:
{ Name: “Tom”, Type: “CAT”, Owner: “Dave”, Age: 2 }
for (vari ...
for (VarJ “ ” 1] ” 1] y
for (vark ... { Name: “Bob”, Type: “CAT”, Owner: “Jeff’, Age: 12 }
{ Name: “Bob”, Type: “CAT”, Owner: “Sean”, Age 5}

Arrays

The workhorse

Arrays

Collection of elements
Contiguous chunk of memory

Should all be of same type*
o Caninsert multiple types in JS crazy-land. Please don't.

Good at:
o lterating
o Inserting/Removing from end.
o Finding/Updating elements by index.

Bad at:

o Finding an element by some criteria™*.
o Inserting element in front or middle.

Aliases: List (not LinkedList), Vector

300

13 BAT”

Inserting into arrays

Inserting at front/middle

300

Copy

Inserting at end

300

300

300

Resizing

resize copy copy

oncat

foreach + push

C
I .
— 600

resize copy resize copy

- 600

Arrays of primitives or references?

® To boxornottobox? Hint: You can’t tell.

300 0x0010

{ val: 300}

var foo = [100, 200, 300 J;

Aside: ES6 Typed Arrays

® Allows working with collections of primitives stored as raw binary data.
® Intended for graphics, video and audio so probably not what you want.

const buffer = new ArrayBuffer(16); / 16 bytes
const int32View = new Int32Array(buffer); // 16 bytes / 4 bytes perint = 4 ints

for (leti = 0; i < int32View.length; i++) {
int32View[i] = i;
}

int32View.forEach(x => console.log(x)); // 0, 1, 2, 3

Map

The bonus data structure

Maps

® Collection of key:value pairs

® Good at:

o Looking things up based on key.

o Random order inserts and deletes based on key.
® Bad at:

o lterating in sorted order.

o Finding next/previous element in sorted order.

® Aliases: HashMap, Dictionary

Hashing

® Soonto be legal in Canada.
® Goal: Create a “hopefully” unique identifying number for an object.

function getHashCode(s) { var a = "This is a string.";
if (Is) { return O; } var b = "This is a different string.";
console.log(getHashCode(a)); // 4597
var hash = 7; console.log(getHashCode(b)); // 7546
for(vari=0;i < s.length; i++) {
hash += 3 * s.charCodeAt(i); / 3 * UTF-16 char code /I Aside: Horrible because "abc" gives same value as "cba"
} console.log(getHashCode("abc")); // 689

console.log(getHashCode("cba")); // 889
return hash;

Hashing + Array = Hash Map

® What if we we used an object’s hash code as an index into an array?

var key = objB.Name;
console.log(key.getHashCode()); // 1

/] Store
var map[key] = objB;

var objBcopy = map[key];
// Reference equality
objB === objBcopy; // true

Q: What is the run-time complexity of
store? retrieve?

Array Size << Possibile Hash Codes

% SIZE
(% 3)

Obj A 0 :

(Name hash: 0) Obj A
Obj D

Obj B 1 0 Obj C
(Name hash: 1) (Name hash: 3)

ObjC 0 1 Obj B
(Name hash: 3) (Name hash: 1)

2

Obj D 0

(Name hash: 9)

Int32: -2,147,483,648 to 2,147,483,647

Separate Chaining

Obj C
(Name hash: 3)

Obj A Obj D
(Name hash: 0) (Name hash: 9)

Obj B
(Name hash: 1)

LPattern: Join 2+ collections

var primary = [

{ Name: "Tom", Type: "Cat" },
{ Name: "Bob", Type: "Cat" },
{ Name: "Tim", Type: "Dog" }
I;

var secondary = new Map([["Tom", 5], ['Bob", 12]]);

var owners = [

{ Name: "Tom", Owner: "Dave" },
{ Name: "Bob", Owner: "Jeff" }

I;
var tertiary = new Map();

owners.forEach(x => tertiary.set(x.Name, x.Owner));

var results = [J;

primary.forEach(x => results.push({
Name: x.Name,
Owner: secondary.get(x.Name) || 'Unknown’,
Age: tertiary.get(x.Name) || null

)

Results:
{"Name":"Tom","Owner":5,"Age":"Dave"},
{"Name":"Bob","Owner":"Unknown","Age":"Jeff"},
{"Name":"Tim","Owner":12,"Age":null}

Q: What is the run-time complexity?

Q: Why not just objects + properties instead?

Q: Why not just use objects + properties (ESbH style)?

var map = new Map([
["1", 'String'],

[1, 'Number'] ,
Non-String

keys!

console.log(map.get(1));
console.log(map.get('1"));
console.log("Size: ", map.size);

for (let key of map.keys
console.log("Key: ", ke

Easily iterate
over keys and
and values!!!

for (let value of map.values(
console.log("Value:", value);

}

Also:
e Interpreter may be able to optimize.
e Communicates intent to other
programmers.

Q: Why not just use arrays?

Q: Why not just use arrays for everything?

Few elements/items Lots of elements/items
Using an array isn’t a bad idea ® What number do we consider “lots”? 10,
The number of elements (N) is usually 100, 10007
small. ® Apps are getting more complex and pulling

Arrays are simple. KISS. «@80% Vvs. 20%m more data fro.m the backend..
® Faster to do filtering and sorting on front
end than to launch another request.

® Will the amount of data grow over time?

Correctness

® \Would another data structure make the
intent of this code more obvious?
® Want clarity with a bias towards simplicity.

Set

The bonus data structure

Set

® A Setis basically map with no value.

® Best for:

o Checking for presence/absence of something of a key.
o Finding the intersection and disjoint sets of elements between two groups.

® Aliases: HashSet

LPattern: Find unique elements in collection

const things = ["Cat", "Dog", "Rat", "Cat", "Bat", "Bat", "Ant", "Rat" |;
const uniqueThings = new Set(things);

console.log(uniqueThings); // "Cat", "Dog", "Rat", "Bat", "Ant"

Q: What is the run-time complexity?

LPattern: Join 2+ collections

const primary = [const results = [J;
{ Name: "Tim", Type: "DOG" }, primary.forEach(x => results.push({
{ Name: "Bob", Type: "CAT" }, Name: x.Name,

{ Name: "Tom", Type: "CAT" } Type:).(.Type,
: IsVaccinated: secondary.has(x.Name)

k N

const appointments = [Results:
{ Name: "Tim", Type: "CHECKUP" }, {"Name":"Tim","Type":"DOG","IsVaccinated":true}
{ Name: "Bob", Type: "CHECKUP" }, {"Name":"Bob","Type":"CAT","IsVaccinated":true}
{ Name: "Tim", Type: "VACCINATION" }, {"Name":"Tom","Type":"CAT","IsVaccinated":false}

I;

const secondary = new Set();
appointments
filter(x => x.Type == "VACCINATION")
forEach(x => secondary.add(x.Name)); Q: What is the run-time complexity?

Immutable (Persistent) Data Structures

Those things the React/Flux gurus go on about.

Origins of Immutable (Persistent) Data Structures

® Problem: Functional programming likes to create new collections and objects
instead of mutating the existing ones.

® Lots of temporary copies = lots of garbage.

Could we separate collections into changed and unchanged sections replacing

only the changed sections?

Hand-wavey explanation [1/3]

let setA =
let setB =se
let setC ="setB;

1] it 13

console.log(setA); // “A”,

A’ ‘B
console.log(setB); // “A”, “B”
B” Q: How could we tell that SetA, SetB,

and SetC are the same?

1] EE I 11

console.log(setC); // “A”,

Hand-wavey explanation [2/3]

let setA =ne

let setB =—setA;
let setC = setB;
setC =setC-add{*C>);

console.log(setA); // “A”, “B”
console.log(setB); // “A”, “B” Q: How could we tell that SetA and
console.log(setC); // “A”, “B”, “C” SetC are different?

Hand-wavey explanation [3/3]

let setA =
let setB = setA;

let setC = setB;

setC = . “‘CLy,
setB =setB.remove(“A”);

et("A”, “B”);

console.log(setA); // “A”, “B”
console.log(setB); // “B
console.log(setC); // “A”, “B”, “C”

(13
13 b
13

Immutable.js + React.js

From a React perspective the interesting bit is that we can check for changes
quickly.

What if we pass in a set as a prop? Do we need to re-render if the set hasn't
changed?

Immutable.js gives you collections that you can check for changes in constant
time instead of searching through collection’s elements.

shouldComponentUpdate: function(nextProps) {
return nextProps.setA !== this.props.setA; // Compare references

}

Summary

AKA: Quiz Time

Summary / Quiz Time

[True / False] We should use all the fancy stuff all the time.

What complex thing do strings “usually” hide from us?

When is n considered small?

[True / False] Inserting in the middle of an array always causes a resize?
How long does it take to search a list looking for x.ld === 27

What is a map good at?

How long does it take to search a map for myMap[objA.ld]?

What is a hash code?

What is a collision?

Why are immutable data structures useful in React?

