
Data Structures for Web Devs

A very abridged intro to Strings, Complexity, Arrays, Maps,
Sets and Immutable Data Structures

David Forshner

Disclaimer: This is probably all wrong or will be
wrong shortly.

Strings

Start off with something simple … a data type.

Strings

● A wrapper around an internal array of bytes.
● Good at: String … stuff

‘A’ ‘T’‘C’_chars: 0x0200
_length: 3var animal = “CAT”;

0x0001

Strings are immutable

● Once created you cannot change a string’s value.

‘A’ ‘T’‘C’_chars: 0x0200
_length: 3var animal = “CAT”;

animal = animal.replace(“C”, “R”);

0x0004

‘A’ ‘T’‘R’_chars: 0x0300
_length: 3

var animal = new String(“CAT”).replace(“C”, “R”);

0x0008

String concatenation in loops

_chars: 0x0200
_length: 8

var favCats = “My cats:“;

favCats = “My cats: Tim“;

favCats = “My cats: Tim Bob”;

favCats = “My cats: Tim Bob Jim”;

...

_chars: 0x0300
_length: 12

var cats = [“Tim”, “Bob”, “Jim”, “Kat”, “Kim”, “Sam”];
var favCats = “My cats:“;
cats.forEach(x => favCats + “ “ + x);

_chars: 0x0400
_length: 16

_chars: 0x0500
_length: 20

Unicode Encoding/Decoding

● Handles encoding/decoding internal byte array to/from Unicode ☺.

ca á t

U+0020U+0061 U+00E1 U+0074U+0063

2061 C3 A1 7463
Code
Units

UTF-8
HEX

0010000001100001 11000011 0111010001100011
Code
Units

UTF-8
Binary

Code
Points

10100001

?

ECMAScript = UTF-16 Encoding

● .length() returns # of UTF-16 code units not the # of characters (code points)

�

U+1D306

DF06D834 UTF-16 Code Unit (HEX)

0011010011011000 0000011011011111UTF-16 Code Unit Binary

Code Point

console.log("�".length); // 2

Jargon

The CS language barrier

Abstract Data Types

● Abstract Data Types
○ Operations that can be performed
○ Operation performance characteristics

● Confusing because people may not use the “correct terminology”.
● Different implementations type may have different performance characteristics.
● Similar sounding names for slightly different things.

○ ECMAScript Map (Standard doesn’t specify but probably a Hash Table)
○ C# Dictionary (hash table)
○ C# SortedDictionary (binary search tree)
○ Java HashMap (hash table)
○ Java TreeMap (binary search tree)

Big O Complexity

● AKA: “the run-time”, “the situation”,
worst case runtime

● Way to talk about how something
behaves as number of elements grow.

● If I add one extra element how does it
affect the performance?

● Worst case number of operations.
● Independent of how long each

individual operation takes.

Bad

Good

Bad
Times

Maximum problem size
● What is the maximum sized problem that can be solved practically?

Linear Complexity O(n): Find element in collection

“DOG” “BAT”“CAT” . . . “RAT”

RAT?

Hint:

for (var i …

Quadratic Complexity O(n2): Joining two collections

{ Name: “Tom”, Type: “CAT” }

{ Name: “Bob”, Type: “CAT” }

{ Name: “Fido”, Type: “Dog” } { Name: “Tom”, Owner: “Dave” }

{ Name: “Bob”, Type: “Jeff” }

{ Name: “Fido”, Type: “Sean” }

{ Name: “Tom”, Type: “CAT”, Owner: “Dave” }

{ Name: “Bob”, Type: “CAT”, Owner: “Jeff” }

{ Name: “Bob”, Type: “CAT”, Owner: “Sean” }

Hint:

for (var i …
 for (var j

Cubic Complexity O(n3): Joining three collections

{ Name: “Tom”, Type: “CAT” }

{ Name: “Bob”, Type: “CAT” }

{ Name: “Fido”, Type: “Dog” } { Name: “Tom”, Owner: “Dave” }

{ Name: “Bob”, Type: “Jeff” }

{ Name: “Fido”, Type: “Sean” }

{ Name: “Tom”, Type: “CAT”, Owner: “Dave”, Age: 2 }

{ Name: “Bob”, Type: “CAT”, Owner: “Jeff”, Age: 12 }

{ Name: “Bob”, Type: “CAT”, Owner: “Sean”, Age 5 }

Hint:

for (var i …
 for (var j ...
 for (var k ...

{ Name: “Tom”, Age: 2 }

{ Name: “Bob”, Age: 12 }

{ Name: “Fido”, Age: 5 }

Arrays

The workhorse

Arrays

● Collection of elements
● Contiguous chunk of memory
● Should all be of same type*

○ Can insert multiple types in JS crazy-land. Please don’t.

● Good at:
○ Iterating
○ Inserting/Removing from end.
○ Finding/Updating elements by index.

● Bad at:
○ Finding an element by some criteria**.
○ Inserting element in front or middle.

● Aliases: List (not LinkedList), Vector

100

200

300

“CAT”

“DOG”

“BAT”

Inserting into arrays

Inserting at front/middle Inserting at end

100

200

300

100

200

300

1000

Copy

100

200

300

1000

100

200

300

Resizing

foreach + push concat

100

200

400

500

600

100

200

resize

100

200

400

copy

100

200

400

copy

500

100

resize

200

400

500

100

200

400

500

600

copy

100

200

400

500

600

100

200

100

200

400

500

600

copy resize

vs.

Arrays of primitives or references?

● To box or not to box? Hint: You can’t tell.

100

200

300

 { _val: 100 }

{ _val: 200 }

 { _val: 300 }

0x0030

0x0060

0x0010

var foo = [100, 200, 300];

? ?

Aside: ES6 Typed Arrays

● Allows working with collections of primitives stored as raw binary data.
● Intended for graphics, video and audio so probably not what you want.

const buffer = new ArrayBuffer(16); // 16 bytes
const int32View = new Int32Array(buffer); // 16 bytes / 4 bytes per int = 4 ints

for (let i = 0; i < int32View.length; i++) {
 int32View[i] = i;
}

int32View.forEach(x => console.log(x)); // 0, 1, 2, 3

Map

The bonus data structure

Maps

● Collection of key:value pairs
● Good at:

○ Looking things up based on key.
○ Random order inserts and deletes based on key.

● Bad at:
○ Iterating in sorted order.
○ Finding next/previous element in sorted order.

● Aliases: HashMap, Dictionary

Hashing

● Soon to be legal in Canada.
● Goal: Create a “hopefully” unique identifying number for an object.

function getHashCode(s) {
 if (!s) { return 0; }

 var hash = 7;
 for(var i = 0; i < s.length; i++) {
 hash += 3 * s.charCodeAt(i); // 3 * UTF-16 char code
 }

 return hash;
}

var a = "This is a string.";
var b = "This is a different string.";
console.log(getHashCode(a)); // 4597
console.log(getHashCode(b)); // 7546

// Aside: Horrible because "abc" gives same value as "cba"
console.log(getHashCode("abc")); // 889
console.log(getHashCode("cba")); // 889

Hashing + Array = Hash Map

● What if we we used an object’s hash code as an index into an array?

0x010

0x020

null

ObjA
(Name hash: 0)

ObjB
(Name hash: 1)

var key = objB.Name;
console.log(key.getHashCode()); // 1

// Store
var map[key] = objB;

// Retrieve
var objBcopy = map[key];

// Reference equality
objB === objBcopy; // true

Q: What is the run-time complexity of
store? retrieve?

0

1

2

Array Size << Possibile Hash Codes

Obj B
(Name hash: 1)

Obj A
(Name hash: 0)Obj D

(Name hash: 9)
0

1

2

Obj B
(Name hash: 1)

Obj A
(Name hash: 0)

Obj C
(Name hash: 3)

Obj D
(Name hash: 9)

0

1

0

0

% SIZE
(% 3)

Obj C
(Name hash: 3)

Int32: -2,147,483,648 to 2,147,483,647

Separate Chaining

0x001

0x005

null

val: 0x1000
next: 0x0200

Obj B
(Name hash: 1)

0

1

2

Obj A
(Name hash: 0)

Obj C
(Name hash: 3)

val: 0x2000
next: 0x0300

val: 0x0100
next: null

val: 0x3000
next: null

Obj D
(Name hash: 9)

µPattern: Join 2+ collections
var primary = [
 { Name: "Tom", Type: "Cat" },
 { Name: "Bob", Type: "Cat" },
 { Name: "Tim", Type: "Dog" }
];

var secondary = new Map([["Tom", 5], ["Bob", 12]]);

var owners = [
 { Name: "Tom", Owner: "Dave" },
 { Name: "Bob", Owner: "Jeff" }
];
var tertiary = new Map();
owners.forEach(x => tertiary.set(x.Name, x.Owner));

// Join together to create results
var results = [];
primary.forEach(x => results.push({
 Name: x.Name,
 Owner: secondary.get(x.Name) || 'Unknown',
 Age: tertiary.get(x.Name) || null
}));

Results:
 {"Name":"Tom","Owner":5,"Age":"Dave"},
 {"Name":"Bob","Owner":"Unknown","Age":"Jeff"},
 {"Name":"Tim","Owner":12,"Age":null}

Q: What is the run-time complexity?

Q: Why not just objects + properties instead?

Q: Why not just use objects + properties (ES5 style)?

var map = new Map([
 ["1", 'String'],
 [1, 'Number']
]);

console.log(map.get(1)); // Number
console.log(map.get('1')); // String
console.log("Size: ", map.size); // 2

for (let key of map.keys()) {
 console.log("Key: ", key);
}

for (let value of map.values()) {
 console.log("Value:", value);
}

Easily iterate
over keys and
and values!!!Non-String

keys!

size!!
Also:

● Interpreter may be able to optimize.
● Communicates intent to other

programmers.

Q: Why not just use arrays?

Q: Why not just use arrays for everything?

Few elements/items

● Using an array isn’t a bad idea
● The number of elements (N) is usually

small.
● Arrays are simple. KISS.

Lots of elements/items

● What number do we consider “lots”? 10,
100, 1000?

● Apps are getting more complex and pulling
more data from the backend.

● Faster to do filtering and sorting on front
end than to launch another request.

● Will the amount of data grow over time?

80% vs. 20%

Correctness

● Would another data structure make the
intent of this code more obvious?

● Want clarity with a bias towards simplicity.

Set

The bonus data structure

Set

● A Set is basically map with no value.
● Best for:

○ Checking for presence/absence of something of a key.
○ Finding the intersection and disjoint sets of elements between two groups.

● Aliases: HashSet

µPattern: Find unique elements in collection

const things = ["Cat", "Dog", "Rat", "Cat", "Bat", "Bat", "Ant", "Rat"];

const uniqueThings = new Set(things);

console.log(uniqueThings); // "Cat", "Dog", "Rat", "Bat", "Ant"

Q: What is the run-time complexity?

µPattern: Join 2+ collections
const primary = [
 { Name: "Tim", Type: "DOG" },
 { Name: "Bob", Type: "CAT" },
 { Name: "Tom", Type: "CAT" }
];

const appointments = [
 { Name: "Tim", Type: "CHECKUP" },
 { Name: "Bob", Type: "CHECKUP" },
 { Name: "Tim", Type: "VACCINATION" },
];

const secondary = new Set();
appointments
 .filter(x => x.Type == "VACCINATION")
 .forEach(x => secondary.add(x.Name));

const results = [];
primary.forEach(x => results.push({
 Name: x.Name,
 Type: x.Type,
 IsVaccinated: secondary.has(x.Name)
}));

Results:
 {"Name":"Tim","Type":"DOG","IsVaccinated":true}
 {"Name":"Bob","Type":"CAT","IsVaccinated":true}
 {"Name":"Tom","Type":"CAT","IsVaccinated":false}

Q: What is the run-time complexity?

Immutable (Persistent) Data Structures

Those things the React/Flux gurus go on about.

Origins of Immutable (Persistent) Data Structures

● Problem: Functional programming likes to create new collections and objects
instead of mutating the existing ones.

● Lots of temporary copies = lots of garbage.
● Could we separate collections into changed and unchanged sections replacing

only the changed sections?

Hand-wavey explanation [1/3]

let setA = new Set(“A”, “B”);
let setB = setA;
let setC = setB;

console.log(setA); // “A”, “B”
console.log(setB); // “A”, “B”
console.log(setC); // “A”, “B”

‘A’_chunks: [
 0x0010
]

‘B’

Q: How could we tell that SetA, SetB,
and SetC are the same?

Hand-wavey explanation [2/3]

let setA = new Set(“A”, “B”);
let setB = setA;
let setC = setB;
setC = setC.add(“C”);

console.log(setA); // “A”, “B”
console.log(setB); // “A”, “B”
console.log(setC); // “A”, “B”, “C”

‘A’_chunks: [
 0x0010
]

_chunks: [
 0x0010,
 0x0020
]

‘C’

‘B’

Q: How could we tell that SetA and
SetC are different?

Hand-wavey explanation [3/3]

let setA = new Set(“A”, “B”);
let setB = setA;
let setC = setB;
setC = setC.add(“C”);
setB = setB.remove(“A”);

console.log(setA); // “A”, “B”
console.log(setB); // “B”
console.log(setC); // “A”, “B”, “C”

‘A’_chunks: [
 0x0010,
 0x0030
]

_chunks: [
 0x0010,
 0x0020,
 0x0030
]

‘C’

_chunks: [
 0x0030
]

‘B’

Immutable.js + React.js

● From a React perspective the interesting bit is that we can check for changes
quickly.

● What if we pass in a set as a prop? Do we need to re-render if the set hasn't
changed?

● Immutable.js gives you collections that you can check for changes in constant
time instead of searching through collection’s elements.

shouldComponentUpdate: function(nextProps) {

 return nextProps.setA !== this.props.setA; // Compare references

}

Summary

AKA: Quiz Time

Summary / Quiz Time

● [True / False] We should use all the fancy stuff all the time.
● What complex thing do strings “usually” hide from us?
● When is n considered small?
● [True / False] Inserting in the middle of an array always causes a resize?
● How long does it take to search a list looking for x.Id === 2?
● What is a map good at?
● How long does it take to search a map for myMap[objA.Id]?
● What is a hash code?
● What is a collision?
● Why are immutable data structures useful in React?

